Immunotherapy for Cancer: Where are we now?

Marcus O. Butler Princess Margaret Cancer Centre

Goals for the Treatment of Metastatic "Incurable" Cancer

Tumor microenvironment – immune cells

Kerkar and Restifo, Cancer Res 2012

Three Requirements for Spontaneous or Therapeutic Immune Response

Mellman, Coukos, Dranoff. Nature 2011;480:480-489

Immune Checkpoint Antibodies

The power of immunotherapy

Harmankaya K, et al: Presented at EADO 7th World Congress of Melanoma 2009, Vienna, Austria

Improved Survival with Ipilimumab (Anti-CTLA-4)

Metastatic Melanoma Survival: Ipilimumab Therapy

Durability of 10 year long-term survival after 3 years

Schadendorf D et al. J Clin Oncol 2015; Feb 9: doi 10.1200/JCO.2014.56.2736

Immune Checkpoint Inhibitor Monotherapy

Males 40,000 Deaths)	Females 36,600 Deaths	
Lung	27.0%	Lung	26.5%
Colorectal	12.8%	Breast	13.8%
Prostate	10.0%	Colorectal	11.5%
Pancreas	5.5%	Pancreas	6.0%
Bladder	3.9%	: Ovary	4.7%
Esophagus	3.9%	Non-Hodgkin lymphoma	a 3.3%
Leukemia	3.8%	: Leukemia	3.1%
Non-Hodgkin lymphoma 3.6%		Body of uterus	2.5%
Stomach	3.2%	Brain/CNS	2.2%
Brain/CNS	2.9%	Stomach	2.2%
Kidney	2.8%	E Kidney	1.8%
Liver	2.0%	Bladder	1.8%
Oral	2.0%	E Multiple myeloma	1.7%
Multiple myeloma	1.9%	Esophagus	1.2%
Melanoma	1.6%	: Melanoma	1.1%
Larynx	0.8%	Oral	1.0%
Breast	0.2%	E Cervix	1.0%
All other cancers	12.2%	Liver	0.7%
		Larynx	0.2%
		All other cancers	13.7%

Canadian Cancer Statistics 2014

*TNBC subtype only

Management of cancer in the post-anti-PD-1/L1 era

ACT with Gene-Engineered T Cells

Antitumor TCR/CAR genes

(Rosenberg, Nat Rev Clin Oncol. 2011)

Summary

- Oncologists have become Immunotherapists
 - We have made great strides for many patients
 - However, most do not have long-term benefit
- Ways to make it better:
 - New combinations
 - Searching for better response rates, lower toxicity
 - Cell therapies, vaccines, radiation to focus the immune response
 - New strategies
 - Better selection
 – identify who can easily respond to therapy and who needs a faster approach

Challenges

- Treating patients with the best therapies tailored to their tumor and immune system
- Understand the value of these new therapies
 - Response rate
 - Reduction of pain and suffering
 - Long-term benefit
- Managing the health care system
 - Access to treatments through partnerships with patients, industry, government, and the healthcare system